

GT230 Series

Pressure Controllers User Manual

Table of contents

2 3 4 5 5 6
3 5 5 6
4 5 5 6
5 5 6
5 6
6
6
12
12
16
21
24

1. Overview

Introduction

Tianjin GASTOOL Instrument Co., Ltd. is a manufacturer specializing in flowmeters/controllers and pressure controllers. Providing reliable solutions for various applications, widely used in gas chromatography, analytical equipment, material equipment, biomedicine, semiconductors and other fields.

GT230 series pressure controller can be customized according to customer needs and \gg is more suitable for the customer's use environment.

Features

- High-precision, high-resolution control, control accuracy 0.001PSI (0-150 PSI range control accuracy is 0.01 PSI)
- Power less than 2W
- $50 \times 24 \times 55$ mm (L × W × H) package size
- Digital control, RS-485 Modbus RTU communication mode
- Control Range -15PSIG...150PSIG
- Provides various controller models such as pressure reducing type and back pressure type
- High repeatability and reliability
- Using electromagnetic proportional valve, i, long service life and a fast response speed
- Built-in temperature compensation
- Internal closed-loop control with high stability

Range and Accuracy

- Built-in high-precision sensor, accuracy up to \pm 0.25% FS
- GT230 series control accuracy up to 0.001 PSI
- Provide various ranges: -1...1PSIG/ -15...15PSIG/0...60PSIG/0...150PSIG

Digital Design

GT230 series pressure controllers are equipped with high-precision pressure sensors and digital circuits as standard. The digital circuits can complete all basic functions required for measurement and control. GT230 series uses standard RS -485 Modbus RTU communication mode. RS-485 bus can be expanded to up to 255 devices at the same time.

➢ Application Areas

- Gas and liquid chromatographs
- Semiconductor Process
- Environmental monitoring equipment (such as VOCS, etc.)
- Micro- reactor and material preparation experimental device (CVD)
- Reactor pressure control
- Gas generator
- Gas flow control

2. Control Principle

GT230 pressure reducing type pressure controller

GT232 external pressure type pressure controller

GT230B back pressure controller

GT233 process control (pressure relief) pressure controller

3. Application Examples

There are many types of gas pressure control solutions, which cannot be listed one by one. The following are some common control solutions. Since the actual application environment is different, the following cases are for reference only. At the same time, you are welcome to call for consultation, and our staff will provide you with better ideas and solutions.

1. Pressure Controller for Constant Flow Control

In the fields of gas chromatography, analytical testing equipment, biomedicine, etc., where micro-flow or constant flow control is required, a pressure controller can be used to control the pressure at the front end of the flow-limiting device (gas resistance, chromatographic column, etc.) to obtain a constant flow through the flow-limiting device (gas resistance, chromatographic column, etc.).

The recommended gas resistance is the GT550R series two-way gas resistance, which has a wide variety and is easy to

use. For details, please visit www.gastool.cn or call for consultation.

2. Cavity Constant Pressure Control

The cavity pressure control can choose pressure reducing type and back pressure type pressure controller according to the application scenario. During use, it is necessary to add a flow limiting device, which can be a gas resistance or a flow controller.

The current limiting device can be selected from GT300 series flow controller or GT550R series two-way gas resistor. Please visit <u>gastool. cn</u> or call for consultation.

4. Technical Parameters

Physical Parameters

Valve	Proportional valve
Through the Medium	Non-corrosive gas
Operating Temperature	0 – 50 °C
Temperature Compensation Range	0 - 50 °C
Storage Temperature	-40 ~ 85 ℃
Leakage Rate	< 0.020SCCM He (pressure difference 150PSI)
Length × Width × Height	50 × 24 × 55 mm

Electrical Parameters

Operating Voltage	DC 12V±10% / 24V±10% (depending on the model)
Maximum Operating Current	< 200mA
Power	< 2W
Digital Control Signal	RS-485 MODBUS RTU
Analog Control Signal	Analog voltage signal 0 - 5V

Run Parameters

Pressure Range	- 1 ~ 1PSIG / -15~15 PSIG / 0~60 PSIG / 0 ~ 150 PSIG
Pressure Accuracy	< ±0.25 % FS
Repeatability	< ±0.25 % FS
Control Accuracy	0.001PSI (150PSI range control accuracy 0.01PSI)
Response Time	< 100ms (depending on inlet pressure)
Pressure Resistance	150 PSID

PSIG stands for gauge pressure, which is relative to ambient air pressure; PSID stands for differential pressure, which is the pressure difference between the inlet and outlet of the equipment.

Dot	Line Number		Parameter
Number		Definition	
1	White Orange	GND	Power Ground
2	Orange	VCC	Power supply DC +12V/+24V
3	White Green	RS485B	Digital signal RS485B/-
4	Blue	RS485A	Digital signal RS485A/+
5	White and blue	GND	Analog signal reference ground
6	Green	SET	Analog signal setting (0-5V)
7	White Prown	1/0	Digital signal selection (floating or DC3.3V)
	White brown	10	Analog signal selection (connected to pin 5)
8	Brown	OUTPUT	Analog signal output (0-5V)
N. C. C.		1 1 1 1 1 1	. 1

5. Electrical Configuration

Note: Switching between analog and digital signals requires power off.

6. Size Structure

GT230 Dimensions

7. Modbus Communication

7.1 Quick Start

The Modbus - RTU standard communication protocol is used , including CRC 16 checksum. This section is a quick start communication protocol. For detailed communication protocol, please refer to 7.2 . Baud rate: Depends on the device settings, the product default baud rate is 9600 Parity bit: none Data bits: 8 bit Stop bit: 1 bit Data communication format: hexadecimal

Commonly used communication protocols are as follows:

• Reading Pressure

Send Data	Address	Function Code	Starting Register Address	Number of Registers		CRC-16
	0xXX	0x04	0x0001	0x0	002	0xXXXX
Return	Address	Function	Number of Bytes	Low Byte	High Byte	CRC-16
Data		Code				
	0xXX	0x04	0x04	0xXXXX	0xXXXX	0xXXXX

Description: This command can be used to obtain the current EPC actual pressure. The pressure value is a hexadecimal floating point number.

Example: Read the current pressure value of EPC at address 1,20 (hexadecimal floating-point number: 41 A0 00 00):

Send data: 01 04 00 01 00 02 20 0B

Return data: 01 04 04 00 00 41 A0 CB AC

Send	Address	Function	Starting	Number	Number	Low Byte	High	CRC-16	
Data		Code	Register	of	of Data	Data	Byte		
			Address	Registers	Bytes		Data		
	0xXX	0x10	0x000B	0x0002	0x04	0xXXXX	0xXXXX	0xXXXX	
Return	Address	Function	Starting		Number of Registers				
Data		Code	Register						
			Address						
	0xXX	0x10	0x000B		0xXXXX				

Setting Pressure

Description: This command can be used to set the pressure setting value, which is a hexadecimal floating point number.

When the memory function is turned on, a configuration information burning command needs to be issued, and the EPC will burn and save the configuration information.

Example: Set the EPC pressure value at address 1 to 30 (hexadecimal floating point number: 41 F0 00 00): Send data: 01 10 00 0B 00 02 04 00 00 41 F0 82 08

Return data: 01 10 00 0B 00 02 30 0A

• Read the Set Pressure Value

Send Data	Address	Function Code	Starting Register Address	Number of Registers 0x0002		Number Of Data Bytes
	0xXX	0x03	0x000B			0xXXXX
Return	Address	Function	Number of Bytes	Number of	CRC-16	Return Data
Data		Code		Registers		
	0xXX	0x03	0x04	0xXXXX	0xXXXX	0xXXXX

Description: This command can be used to obtain the current EPC pressure setting value, which is a hexadecimal floating point number.

Example: Read the current pressure setting value of the EPC at address 1 as 30 (hexadecimal floating point number: 41 F0 00 00):

Send data: 01 03 00 0B 00 02 B5 C9

Return data: 01 03 04 00 00 41 F0 CA 27

Zero Setting

Send	Address	Function	Starting Register	Number of	Number Of	Data	CRC-16
Data		Code	Address	Registers	Data Bytes		
	0xXX	0x10	0×0006	0x0001	0x02	0x0001	0xXXXX
Return	Address	Function	Starting Register	Number of Registers			CRC-16
Data		Code	Address				
	0xXX	0x10	0x0006		0x0001		0xXXXX

Description: Issue this command and the device will adjust the zero point by itself. When using this command, you first need to confirm that no gas passes through the product.

Example: reset the EPC address to 01 : Send data: 01 10 00 06 00 01 02 00 01 67 F6 Return data: 01 10 00 06 00 01 E1 C8

• Changing the Pressure Units

Send	Address	Function	Starting Register	Number of	Number Of	Data	CRC-16
Data		Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x0005	0x0001	0x02	0xXXXX	0xXXXX
Return	Address	Function	Starting Register	Num	Number of Registers		CRC-16
Data		Code	Address				
	0xXX	0x10	0x0005	0x0002		0xXXXX	

Description: This command can be used to change the pressure unit used by EPC. 0x 0000 represents PSI and 0x 0001 represents kPa .

When the changes are completed and need to be saved, a configuration information burning command needs to be issued, and EPC will burn and save the configuration information.

EPC address 01 to kPa unit :

Send data: 01 10 00 05 00 01 02 00 01 67 C5

Return data: 01 10 00 05 00 01 11 C8

• Read the Current Pressure Unit

Send Data	Address	Function	Starting Register	Number of Registers	CRC-16
		Code	Address		
	0xXX	0x 03	0x0005	0x0001	0xXXXX
Return	Address	Function	Number Of Bytes	Data	CRC-16
Data		Code			
	0xXX	0x03	0x02	0xXXXX	0xXXXX

Description: This command can be used to obtain the pressure unit currently used by the EPC. The data is a hexadecimal integer. 0x 0000 represents PSI and 0x 0001 represents kPa .

Example: Read the current pressure unit of EPC at address 1 in kPa (hexadecimal floating point number: 00 01):

Send data: 01 03 00 05 00 01 94 0B Return data: 01 03 02 00 01 79 84

• Change the Pressure Control Mode (Gauge Pressure Control/Absolute Pressure Control)

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x000F	0x0001	0x02	0xXXXX	0xXXXX
Return	Device	Function	Starting Register	Number of Registers			CRC-16
Data	Address	Code	Address				
	0xXX	0x10	0x000F	0x0002			0xXXXX

Description: This command can be used to change the pressure type used by EPC. 0x 0000 represents gauge pressure control, and 0x 0001 represents absolute pressure control.

When the changes are completed and need to be saved, a configuration information burning command needs to be issued, and EPC will burn and save the configuration information.

Example: Change the EPC with address 01 to absolute pressure control mode :

Send data: 01 10 00 0F 00 01 02 00 01 67 6F

Return data: 01 10 00 0F 00 01 31 CA

Read the Current Pressure Control Mode

Send Data	Address	Function	Starting Register	Number of Registers	CRC-16
		Code	Address		
	0xXX	0x03	0x000F	0x0001	0xXXXX
Return	Address	Function	Number Of Bytes	Low Byte Data	High Byte
Data		Code			Data
	0xXX	0x03	0x02	0xXXXX	0xXXXX

Description: This command can be used to obtain the current EPC pressure type. The data is a hexadecimal integer. 0x 0000 represents gauge pressure control, and 0x0001 represents absolute pressure control. Example: Read the current pressure type of the EPC at address 1 as absolute pressure control (hexadecimal

floating point number: 00 00):

Send data: 01 03 00 0F 00 01 B4 09

Return data: 01 03 02 00 00 B8 44

• Change of Address

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x0003	0x0001	0x02	0xXXXX	0xXXXX
Return	Device	Function	Starting Register	Num	Number of Registers		
Data	Address	Code	Address				
	0xXX	0x10	0x0003	0x0001		0xXXXX	

Note: The factory default address is 01. Use this command if you need to change the address. After receiving the reply, power off and restart the device to complete the address change. If the power is not turned off and restarted, the communication uses the previous address. The address range is 1-255.

When the changes are completed and need to be saved, a configuration information burning command needs to be issued, and EPC will burn and save the configuration information.

Example: Change the EPC address from 01 to 05 :

Send data: 01 10 00 03 00 01 02 00 05 66 60

Return data: 01 10 00 03 00 01 F1 C9

• Changing the Baud rate

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x0004	0x0001	0x02	0xXXXX	0xXXXX
Return	Device	Function	Starting Register	Num	Number of Registers		
Data	Address	Code	Address				
	0xXX	0x10	0x0004	0x0001		0xXXXX	

Note: The factory default baud rate is 9600. If you need to change the baud rate, use this command. After receiving the reply, power off and restart the device to complete the baud rate change. If the power is not turned off and restarted, the communication uses the previous baud rate. The data is a hexadecimal integer. The sent data is the actual baud rate reduced by 100 times , that is, the sent data = actual baud rate/100. The baud rate can be customized. The commonly used baud rates are shown in the table:

Serial number	Baud rate	Sending Data
1	9600	96
2	14400	144
3	19200	192
4	38400	384
5	57600	576
6	115200	1152

When the changes are completed and need to be saved, a configuration information burning command needs to be issued, and EPC will burn and save the configuration information.

Example: Set the baud rate of the EPC with address 1 from 9600 to 115200 :

Send data: 01 10 00 04 00 01 02 04 80 A4 B4

Return data: 01 10 00 04 00 01 40 08

• Adjust Valve Control Switch Status

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x000D	0x0001	0x02	0x000X	0xXXXX
Return	Device	Function	Starting Register	Numl	Number of Registers		
Data	Address	Code	Address				
	0xXX	0x10	0x000D		0x0001		0xXXXX

Description: This command can be used to realize valve control switch operation. The data is a hexadecimal integer. The relationship between data and function is shown in the table:

Function	data
Valve fully closed	0x0000
Valve fully open	0x0001
Closed loop automatic control	0x0002

Example: Fully close the EPC valve with address 01 : Send data: 01 10 00 0D 00 01 02 00 00 A7 4D Return data: 01 10 00 0D 00 01 90 0A

• Memory Function On and Off

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0x000E	0x0001	0x02	0x000X	0xXXXX
Return	Device	Function	Starting Register	Num	Number of Registers		
Data	Address	Code	Address				
	0xXX	0x10	0x000E	0x0001		0xXXXX	

Description: This command can be used to turn the memory function on and off. The data is a hexadecimal integer. The relationship between data and function is shown in the table:

Function	data
Memory function off	0x0000
Memory function on	0x0001

When the changes are completed and need to be saved, a configuration information burning command needs to be issued, and EPC will burn and save the configuration information.

Example: EPC memory function at address 01 : Send data: 01 10 00 0E 00 01 02 00 01 66 BE Return data: 01 10 00 0E 00 01 60 0A

• Configuration Information Burning

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0xXX	0x10	0×0006	0x0001	0x02	0x0004	0xXXXX
Return	Device	Function	Starting Register	Numl	Number of Registers		
Data	Address	Code	Address				
	0xXX	0x10	0x0006	0x0001			0xXXXX

Description: After issuing this command, EPC will burn and save the configuration information. The configuration information that needs to be burned and saved is as follows:

	Configuration Information
	Set pressure (with memory function)
	Address
	Baud rate
	Pressure Unit
	Valve controlled switch
	Memory function
	Pressure control method
_	

Example: Save the configuration parameters of the EPC with address 01 : Send data: 01 10 00 06 00 01 02 00 04 A7 F5 Return data: 01 10 00 06 00 01 E1 C8

• Restore Factory Settings

Send	Device	Function	Starting Register	Number of	Number of	Data	CRC-16
Data	Address	Code	Address	Registers	Data Bytes		
	0x XX	0x 10	0x0006	0x0001	0x02	0x 000	0x XXXX
						5	
Return	Device	Function	Starting Register	Num	Number of Registers		
Data	Address	Code	Address				
	0x XX	0x 10	0x0006	0x0001		0x XXXX	

Description: After this command is issued, the EPC is restored to factory settings.

Example: EPC address 01 to factory settings :

Send data: 01 10 00 06 00 01 02 00 05 66 35

Return data: 01 10 00 06 00 01 E1 C8

7.2 Communication Protocol Detail

7.2.1 Data Format

According to the Modbus (RTU) communication procedure, commands from the host computer and responses from the EPC are in units of data sets called frames.

The structure of the command frame and response frame is as follows.

In the following descriptions, if a value is preceded by " 0x ", it means a hexadecimal number, such as " 0x02 ".

1. Command Frame

In RTU mode, the signal must start with a quiet interval of at least 3.5 characters and end with a quiet interval of at least 3.5 characters.

CRC-16 Data Range

	minimum quiet interval of 3.5 character times
Slave Address	Please specify a Unit Number.
	0x00 to 0x63 (0 to 99) can be set in hexadecimal format .
	For unified broadcast, specify 0x00.
	But no response is returned during broadcast.
Function Code	The function code is a code indicating the command type of the host device and is set
	using 1 byte in hexadecimal format .
Data	The text body corresponding to the function code.
	Used to specify variable addresses, parameter values, etc. (set in hexadecimal format)
CRC-16	Cyclic Redundancy Check
	The checksum is calculated from the value from the slave address to the end of the
	data.
	Use 2 bytes in hexadecimal format .
	minimum quiet interval of 3.5 character times

CRC Check

Information is processed byte by byte in a calculation workpiece (16 -bit register: hereinafter referred

to as CRC register).

- (1) Set the initial value of the CRC register to 0xFFFF.
- (2) XOR operation on the CRC register and the first byte of the information , and return the calculation result to the CRC register.
- (3) Fill the MSB with " 0 " and shift the CRC register right by 1 bit.
- (4) If the bit shifted from the LSB is "0", step (3) is repeated (processing the next shift).If the bit shifted from the LSB is "1", an XOR operation is performed on the CRC register and 0xA001, and the result is returned to the CRC register.
- (5) Repeat steps (3) and (4) until 8 bits are shifted.
- (6) If the information processing has not been completed, an XOR operation is performed on the CRC register and the next byte of the information , and the result is returned to the CRC register, and the process is repeated from step (3) .
- (7) Append the calculated result (the value of the CRC register) to the message from the low-order byte.

Calculation Example:

Data to be calculated: 01 03 04 00 00 41 A0 Calculation result: 1B CA Send data: 01 03 04 00 00 41 A0 CA 1B

2. Response Frame

Normal Response Frame

CRC-16 Data Range

• Response Frame When Exception Occurs

CRC-16 Data Range

Slave Address	Use the number specified via the command frame directly.			
Slave Address	The unit number of the response was returned.			
	The function code of the received signal.			
	However, the response frame in case of exception is the value of " 0x80 " added to the			
Function Code	function code that received the signal, indicating an abnormal response.			
	example: Receive function code = $0x03$			
	Function code in the response frame when responding to exception = $0x83$			
Error Code	An end code indicating the abnormal contents.			
	Cyclic Redundancy Check			
CDC 16	The checksum is calculated from the value from the slave address to the end of the			
CKC-10	data.			
	Use hexadecimal format and 2 bytes.			

3. Error Code

Error Code	Name	Error Level	Description
0x01	Configuration Data Exception	Generally	Configuration data is abnormal
0x02	Configuration Data Exception	Serious	Configuration data is abnormal
0x07	Pressure Setting Value Exceeded the Limit	Generally	If the pressure setting value exceeds the maximum range, the value will be refreshed to the maximum range value.
0x08	Pressure Exceeding Limit	Generally	The current pressure exceeds the maximum range of the device hardware
0x09	Wrong Direction	Generally	Pressure less than -5%* maximum range
0x0C	Configuration Register Programming Error	Generally	Configuration register programming error
0x0D	Cache Register Programming Error	Generally	Cache register programming error
0x10	Sensor Reading Error	Serious	Sensor communication abnormality

No Response

In the following cases, the received command is not processed and no response is returned. Therefore, the host device is in timeout state.

 \cdot When the slave address receiving the instruction is inconsistent with the communication address number;

 $\cdot\,$ When parity error or frame error occurs due to transmission error, etc.

 $\cdot\,$ When a CRC-16 code error occurs in the received command frame ;

 \cdot When the reception time interval of each data constituting the command frame is vacant for more than 3.5 character times.

In addition, in the following cases, there is no response even though the process (target function) is executed .

 $\cdot\,$ When broadcast (slave address: 0x00) is specified .

7.2.2 Function Code

Function code	Name	Description
0x03	Read Configuration Registers	Read the configuration register area. Multiple contiguous configuration register regions can be read.
0x04	Read Status Register	Read the status register area. Multiple consecutive status register areas can be read
0x06	Writing to a Single Configuration Register	Writes to a single configuration register area.
0x10	Writing to Multiple Configuration Registers	Write to the configuration register area. Multiple contiguous configuration register areas can be written.

The function codes are shown in the following table.

1. Read Configuration Register Operation (0x03)

• Command Frame

Slave Address	Function Code	Starting Register Address	Number of Registers	CRC-16
			5	

Data name	Length (Bytes)	Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function Code	1	0x03	Read configuration register function code.
Starting Register Address	2	0x0000-0xFFFF	The first configuration register address among the configuration registers to be read.
Number of Registers	2	0x0000-0x00FF	The number of configuration registers to read.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

Response Frame

Slave Address	Function Code	Number of Bytes	Register Data Value	CRC-16
---------------	---------------	-----------------	---------------------	--------

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function Code	1	0x03	Read configuration register function code.
Number of Bytes	1	0x00-0xFF	The total number of bytes of configuration register data read.
Register Data	Number of	-	The configuration register data to be read.

Value	bytes		
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

• Error response Frame

Slave Address	Error Function Code	Error Code	CRC-16
		1	

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Error Function Code	1	0x83	Read configuration register error function code.
Error Code	1	0x00-0xFF	Query the error condition based on the error code.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

2. Read Status Register Operation (0x04)

• Command Frame

Slave Address	Eunction Code	Starting Register	Number of	
SIAVE AUDIESS	Function Code	Address	Registers	CKC-10

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function Code	1	0x04	Read the status register function code.
Starting Register Address	2	0x0000-0xFFFF	The first status register address in the status registers to be read.
Number of Registers	2	0x0000-0x00FF	The number of status registers to read.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

• Response Frame

Slave Address	Function Co	ode Number		of Bytes	Register Data Value	CRC-16
Data Name	Length (Bytes)	Data Range		Description		
Slave Address	1	0x01-0xFF		EPC communication address.		
Function Code	1	0x04		Read the	status register functio	n code.

Number of Bytes	1	0x00-0xFF	The total number of bytes of status register data read.
Register Data Value	Number of bytes	-	The status register data to be read.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

• Error Response Frame

Slave Address	Error Function code	Error Code	CRC-16

Data name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Error Function Code	1	0x84	Read status register error function code.
Error Code	1	0x00-0xFF	Query the error condition based on the error code.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

3. Write Single Register Operation (0x06)

• Command Frame

Slave Address	Function	Code	Code Register		Register Data Value	CRC-16	
Data Name	Length (Bytes)	Data F	Range	Descripti	on		
Slave Address	1	0x01-0	0x01-0xFF		EPC communication address.		
Function code	1	0x06	0x06		Write a single configuration register function code.		
Register Address	2	0x000	0x0000-0xFFFF		guration register addr	ess to be written.	
Register Data Value	2	0x000	0x0000-0xFFFF		value to be written to	the configuration	
CRC-16	2	0x000	0-0xFFFF	The check slave add	ksum is calculated fror ress to the end of the	n the value from the data.	

Response Frame

Slave Address Function Code Register Address Register Data Value CRC-1	5
--	---

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function code	1	0x06	Write a single configuration register function code.
Number of Bytes	2	0x0000-0xFFFF	The configuration register address to be written.
Register Data Value	2	0x0000-0xFFFF	The data value to be written to the configuration register.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

• Error Response Frame

Slave Address Error Function (Code Error Code	CRC-16
--------------------------------	-----------------	--------

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Error Function Code	1	0x86	Write configuration register error function code.
Error Code	1	0x00-0xFF	Query the error condition based on the error code.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

4. Write Multiple Register Operations (0x10)

• Command Frame

Slave	Function	Starting Register	Number of	Number	Register Data	
Address	Code	Address	Registers	of Bytes	Value	CRC-10

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function code	1	0x10	Write multiple configuration register function codes.
Starting Register	2		The first register address of the configuration
Address	2		register to be written.
Number of	2		The number of configuration registers that need to
Registers	2	00000-001111	be written.
Number of	1		The total Number of bytes of register data to be
Bytes	T		written.
Register Data	2		The data value to be written to the configuration
Value	۷		register.

			GASTOOL
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

Response Frame

Slave Address	Function code	Starting Register Address	Number of Registers	CRC-16
---------------	---------------	------------------------------	---------------------	--------

Data Name	Length (Bytes)	Data Range	Description
Slave Address	1	0x01-0xFF	EPC communication address.
Function Code	1	0x10	Write multiple configuration register function codes.
Starting Register	2		The first register address of the configuration
Address	2		register to be written.
Number of	2		The number of configuration registers that need to
Registers	2		be written.
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.

• Error Response Frame

Slave Address Error Function Code Error Code CRC-16	
---	--

Data Name	Length (Bytes)	Data Range	Description		
Slave Address	1	0x01-0xFF	EPC communication address.		
Error Function Code	1	0x90	Write configuration register error function code.		
Error Code	1	0x00-0xFF	Query the error condition based on the error code.		
CRC-16	2	0x0000-0xFFFF	The checksum is calculated from the value from the slave address to the end of the data.		

7.2.3 Register

7.2.3.1 Status Register (read only)

Status Register Table

Register Address Name		Data Types	Description	
0x0001-0x0002	Real-time pressure	32 -bit floating point	Real-time pressure data.	
0x0007-0x0008 temperature		32-bit floating point	Temperature.	
0x0009-0x000A	Ambient air pressure	32-bit floating point	Ambient air pressure	

7.2.3.2 Configuration Register (read/write)

The data in the configuration register is executed immediately after being sent. If you need to save the sent configuration data, you need to send the configuration register burn command after sending the data. If the configuration register burn command is not sent, the original data will be restored after the device is powered off. (Except for 0x0 002 gas type.)

If the register address is marked and needs to be saved, the configuration register burning command needs to be executed!

Register Address	Name	Data Types	Description
* 0x0003	Mailing address	16-bit integer	Communication address, address range 1 - 255 . After changing the communication address, you need to power off and restart the device to complete the change. The communication address before power off will remain the same as before the change.
* 0x0004	Baud rate	16-bit integer	Communication baud rate, baud rate range is 9600 - 614400. After changing the baud rate, you need to power off and restart the device to complete the change. The communication baud rate before power off will remain the same as before the change. Send data = actual baud rate / 100. Example: Set the baud rate to 115200 and send data to 1152.
★ 0x0005	Unit	16-bit integer	EPC pressure unit switch. Sending data: 0x0000 — PSI 0x0001 — kPa
0x0006	Function Commands	16-bit integer	EPC needs a certain amount of running time to execute the following functions. During the execution, the device cannot communicate. After the execution is completed,

Configuration Register Table:

		••	·	

Register Address	Name	Data Types	Description
			it can be used normally and the register data is restored to the normal working state (0x 0000). You can check whether the function command is executed by reading the register data.
			0x0000—Normal working status 0x0001—Device Zeroing 0x0004—Configuration register burn 0x0005—Factory Reset
0x000B-0x000C	Pressure setting	32-bit floating point	 Pressure setting value. After setting, EPC will control the pressure to this setting value. * When the memory function is turned on, the configuration register burn command must be executed, otherwise the set value data will not be saved.
0x000D	Valve controlled switch	16-bit integer	The valve fully closed, valve fully opened, and automatic control functions can be achieved by configuring this register. Sending data: 0x0000 —Valve fully closed 0x0001 —Valve fully open 0x0002 —Automatic control
* 0x000E	Memory function	16-bit integer	The memory function can be turned on or off by configuring this register. Sending data: 0x0000 — Memory function disabled 0x0001 — Memory function enabled
* 0x000F	Pressure Type	16-bit integer	gauge pressure control mode and absolute pressure control mode can be realized by configuring this register . Sending data: 0x0000 —Gauge pressure control mode 0x0001 —Absolute pressure control mode
0x0010	Error Code	16-bit integer	0x 0000 indicates no error. For other data, see the error code table.
* 0x0016-0x0017	Proportional coefficient	32-bit floating point	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation. Software download website <u>www.gastool.cn</u> .
* 0x0018-0x0019	Integration coefficient	32-bit floating point	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation.

Register Address		Name	Data Types	Description
				Software download website <u>www.gastool.cn</u> .
*	0x001A-0x001B	Integral limit	32-bit floating point	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation. Software download website <u>www.gastool.cn</u> .
*	0x001C-0x001D	Differential coefficient	32-bit floating point	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation. Software download website <u>www.gastool.cn</u> .
*	0x001E-0x001F	Differential Filter	32-bit floating point	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation. Software download website <u>www.gastool.cn</u> .
	* 0x0020	Control cycle	16-bit integer	It is not recommended to adjust this data. If changes are required, it is recommended to use the product supporting software or call for consultation. Software download website <u>www.gastool.cn</u> .

8. Nomenclature and Order Guide

1. Pressure Relief Type

The above are convertional models, which can be customized according to usage.

2. Back Pressure Type

The above are convertional models, which can be customized according to usage.

3. External Pressure Type

The above are convertional models, which can be customized according to usage.

9. Other

Thank you for purchasing the GST Gas Pressure Controller (EPC).

This manual describes the product functions, performance and application methods to achieve the best use of the product.

Please pay attention to the following when using this product:

- This manual should be read and understood thoroughly before using this product to ensure correct use.
- Personnel using this product should have basic knowledge of electrical systems.
- Please keep this manual in a safe place so that you can refer to it whenever you need it.

Safety Precautions

- Do not touch the terminals while power is on.
- Do not allow metal objects, wires, liquids, etc. to enter the controller, otherwise it may cause dangerous events such as equipment short circuit, electric shock or fire.
- Do not place this product in flammable or explosive places.
- Never disassemble, modify, or repair this product or remove any internal components.
- Please set the product parameters suitable for system control. Improper settings may cause property damage or accidents due to unexpected operations.
- Please calibrate the device within the specified time to ensure the accuracy of the device.
- Before powering on the device, please confirm whether the wiring is correct and whether the power supply voltage meets the requirements of the user manual.
- The gas used must be purified and dust, liquid and oil must be avoided. If necessary, a filter must be installed in the gas line.
- Before use, please confirm whether the gas used is consistent with the calibration gas to avoid incorrect pressure data.
- Do not use corrosive gases to avoid damage to the EPC gas circuit.

Warranty & Service

- Our EPC products will be repaired free of charge if there are any problems within one year after delivery, provided that the user uses them normally according to the instruction manual and the products have not been physically damaged, contaminated, modified or refurbished.
- The free repair scope does not include gas circuit joints and gas circuit joint sealing rings.
- Please inspect the product promptly after receiving it. If any problem occurs, please promptly report it to the salesperson.
- During the warranty period, the product must be repaired by our company or an authorized service center.

- If the user has used the product with toxic, polluting or corrosive gas, the company will not be responsible for repair or warranty.
- The input gas pressure must meet the pressure resistance standard of the product and cannot exceed the maximum pressure required by the product.
- The gas used in the product must be compatible with the sealing material selected by the user . The user is responsible for using each gas in accordance with the applicable safety regulations. Improper use of the product will invalidate the warranty, and the damage caused by improper use cannot be attributed to the company.
- It is forbidden to disassemble the EPC by yourself . If damage is caused by disassembly by yourself, the warranty promised by our company will be invalid.

Focus on gas control products Professional docking application service

Tianjin GAST Instrument Co.,Ltd

www.gastool.cn